The spread of fake news by social bots
نویسندگان
چکیده
The massive spread of fake news has been identified as a major global risk and has been alleged to influence elections and threaten democracies. Communication, cognitive, social, and computer scientists are engaged in efforts to study the complex causes for the viral diffusion of digital misinformation and to develop solutions, while search and social media platforms are beginning to deploy countermeasures. However, to date, these efforts have been mainly informed by anecdotal evidence rather than systematic data. Here we analyze 14 million messages spreading 400 thousand claims on Twitter during and following the 2016 U.S. presidential campaign and election. We find evidence that social bots play a key role in the spread of fake news. Accounts that actively spread misinformation are significantly more likely to be bots. Automated accounts are particularly active in the early spreading phases of viral claims, and tend to target influential users. Humans are vulnerable to this manipulation, retweeting bots who post false news. Successful sources of false and biased claims are heavily supported by social bots. These results suggests that curbing social bots may be an effective strategy for mitigating the spread of online misinformation.
منابع مشابه
A sneak into the Devil's Colony - Fake Profiles in Online Social Networks
Online Social Networks (OSNs) play an important role for internet users to carry out their daily activities like content sharing, news reading, posting messages, product reviews and discussing events etc. At the same time, various kinds of spammers are also equally attracted towards these OSNs. These cyber criminals including sexual predators, online fraudsters, advertising campaigners, catfish...
متن کاملDetecting Fake News in Social Networks via Crowdsourcing
Our work considers leveraging crowd signals for detecting fake news and is motivated by tools recently introduced by Facebook that enable users to flag fake news. By aggregating users’ flags, our goal is to select a small subset of news every day, send them to an expert (e.g., via a third-party factchecking organization), and stop the spread of news identified as fake by an expert. The main obj...
متن کاملSocial Media, News and Political Information during the US Election: Was Polarizing Content Concentrated in Swing States?
US voters shared large volumes of polarizing political news and information in the form of links to content from Russian, WikiLeaks and junk news sources. Was this low quality political information distributed evenly around the country, or concentrated in swing states and particular parts of the country? In this data memo we apply a tested dictionary of sources about political news and informat...
متن کاملSneak into Devil's Colony- A study of Fake Profiles in Online Social Networks and the Cyber Law
Massive content about user’s social, personal and professional life stored on Online Social Networks (OSNs) has attracted not only the attention of researchers and social analysts but also the cyber criminals. These cyber criminals penetrate illegally into an OSN by establishing fake profiles or by designing bots and exploit the vulnerabilities of an OSN to carry out illegal activities. With th...
متن کاملFake News in Social Networks
We model the spread of news as a social learning game on a network. Agents can either endorse or oppose a claim made in a piece of news, which itself may be either true or false. Agents base their decision on a private signal and their neighbors’ past actions. Given these inputs, agents follow strategies derived via multi-agent deep reinforcement learning and receive utility from acting in acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.07592 شماره
صفحات -
تاریخ انتشار 2017